Skip to content

πŸ”Ž Big Picture for Risky Portfolios

Just like last week, investment is a tradeoff between risk and return.

Therefore, just like in last week, your eye out for the formulas for expected return and standard deviation.

Last week, they were for the β€œcomplete portfolio”:

E(rC)=rF+y(E(rP)βˆ’rF)E(r_C) = r_F + y(E(r_P) - r_F)

      or E(rc)=yE(rP)+(1βˆ’y)E(rF)E(r_c) = yE(r_P) + (1-y)E(r_F)

σC=yσPσ_C = yσ_P

Now, we have equations for combing two risky assets into a optimal risky portfolio:

E(rp)=w1E(r1)+w2E(r2)E(r_p)= w_1 E(r_1) + w_2 E(r_2) Οƒp=SQRT(Οƒ12w12+Οƒ22w22+2w1w2Cov(1,2))Οƒp = SQRT(Οƒ_1^2 w_1^2 + Οƒ_2^2 w_2^2 + 2w_1 w_2 Cov_(1,2))

Optimal Risky Portfolios & CAPM

NameEquation
Expected Return of 2+ risky assetsE(rp)=(Er1Γ—w1)+(Er2Γ—w2)E(r_p) = (Er_1 \times w_1) + (Er_2 \times w_2) …
If you have a target for E(rPE(r_P)w1=(E(rp)βˆ’E(r2))(E(r1)βˆ’E(r2))w_1 = \frac{(E(r_p) - E(r_2))}{(E(r_1) - E(r_2))} β†’ w2=1βˆ’w1w_2 = 1 - w_1
Standard Deviation 2 risky assetsσp=SQRT(σ12w12+σ22w22+2w1w2Cov(1,2))σ_p = SQRT(σ_1^2 w_1^2 + σ_2^2 w_2^2 + 2w_1 w_2 Cov_{(1,2)})
Οƒp=SQRT(Οƒ12w12+Οƒ22w22+2w1w2Οƒ1Οƒ2ρ(1,2))Οƒ_p = SQRT(Οƒ_1^2 w_1^2 + Οƒ_2^2 w_2^2 + 2w_1 w_2 Οƒ_1 Οƒ_2 ρ_{(1,2)})
Standard Deviation 2 risky assets
(Spreadsheet-friendly formula)
Οƒp=SQRT((Οƒ12Γ—w12)+(Οƒ22Γ—w22)+(2Γ—w1Γ—w2Γ—Cov(1,2))Οƒ_p = SQRT((Οƒ_1^2 \times w_1^2) +(Οƒ_2^2 \times w_2^2)+(2 \times w_1 \times w_2 \times Cov_{(1,2)})
Οƒp=SQRT((Οƒ12Γ—w12)+(Οƒ22Γ—w22)+(2Γ—w1Γ—w2Γ—Οƒ1Γ—Οƒ2×ρ(1,2)))Οƒ_p = SQRT((Οƒ_1^2 \times w_1^2) + (Οƒ_2^2 \times w_2^2) + (2 \times w_1 \times w_2 \times Οƒ_1 \times Οƒ_2 \times ρ_{(1,2)}))
Standard Deviation 3 risky assets=SQRT((Οƒ12Γ—w12)+(Οƒ22Γ—w22)+(Οƒ32Γ—w32)+= SQRT((Οƒ_1^2 \times w_1^2) + (Οƒ_2^2 \times w_2^2) + (Οƒ_3^2 \times w_3^2) +
  (2Γ—w1Γ—w2Γ—Cov(1,2)(2 \times w1 \times w2 \times Cov_{(1,2)} + (2Γ—w1Γ—w3Γ—Cov(1,3))+(2Γ—w2Γ—w3Γ—Cov(2,3)))(2 \times w_1 \times w_3 \times Cov_{(1,3)}) + (2 \times w_2 \times w_3 \times Cov_{(2,3)}))
Covariance (r1,r2)(r_1,r_2)= E[(r1βˆ’Er1)Γ—(r2βˆ’Er2)]E[(r_1-Er_1) \times (r_2-Er_2)]
Correlation Coefficient (ρ1,2)(ρ_{1,2})ρ1,2=(Covr1,r2)(Οƒ1Γ—Οƒ2)ρ_{1,2} = \frac({Cov_{r_1,r2})}{(Οƒ_1 \times Οƒ_2)} β†’ (ρ is between -1 and 1)
Cov(r1,r2)=Οƒ1Γ—Οƒ2×ρ1,2Cov_{(r_1,r_2)} = Οƒ_1 \times Οƒ_2 \times ρ_{1,2}
Utility FunctionU=E(r)βˆ’12AΟƒ2U=E(r)-\frac{1}{2}AΟƒ^2
Capital Asset Pricing Model (CAPM)(CAPM)ErP=rF+(BΓ—(ErMβˆ’rF))Er_P = r_F + (B \times (Er_M-r_F))
w1w_1 = portion invested in asset 1
w2=(1βˆ’w1)w_2 = (1-w_1) = portion invested in asset 2
EE = expected
rr = return for asset
σσ = Standard Deviation
ρ1,2ρ_{1,2} = correlation between assets 1 and 2
pp = portfolio
rFr_F = risk-free rate
Ξ²Ξ² = Beta